

ΕΡΓΑΣΤΗΡΙΟ ΛΙΜΕΝΙΚΩΝ ΕΡΓΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Μάθημα: Περιβαλλοντική Διαχείριση Παράκτιας Ζώνης

Τρωτότητα Ακτών & Λιμένων

Βασιλική Τσουκαλά Βασιλική Χαλαστάνη Χριστίνα Τσάιμου

| Καθηγήτρια ΕΜΠ

| Υπ. Διδάκτορας ΕΜΠ

| Υπ. Διδάκτορας ΕΜΠ

Αθήνα 2022-2023

Highlights

- Vulnerability of systems Examples of vulnerable systems
- Threats Hazards that affect systems' vulnerability
- Definition & description of vulnerability components
- Vulnerability assessment Estimation of Vulnerability Index
- Climate change & relationship with systems' vulnerability
- Coastal vulnerability
- Port Vulnerability

Educational scope

After this course the student will be able to:

- Familiarize with the complex concept of vulnerability
- Identify potential threats-hazards that affect the vulnerability of a system
- Understand the components of vulnerability and their interaction to assess the vulnerability of a system
- Comprehend the relationship of climate change impacts and vulnerability
- Implement existing practices for coastal vulnerability assessment
- Implement existing practices for port vulnerability assessment

Vulnerability

Vulnerability was introduced in **1970s** within the discourse on natural hazards and disaster (Keefe et al, 1976).

The concept is **relative** and **dynamic** (Iorhen et al, 2021).

Vulnerability refers to various **systems**: individuals, households, communities (e.g. coastal), infrastructures (e.g. ports) etc.

If the system is unable to withstand, for example, an earthquake

or a storm, or lack of attentiveness may result in a slower reply to a disaster, leading to better loss of life or protracted suffering.

The reverse side of the coin is **capacity**, which can be described as the resources available to systems to cope with a threat or to resist the impact of a hazard.

A system might be vulnerable to certain events but be resilient to others. Therefore, it is important to consider the specific risk and threat profiles to the area under analysis.

Systems

Systems

Vulnerable systems

A system is a group of interacting elements (or subsystems) having an internal structure which links them into a **unified whole**. The boundary of a system is to be defined, as well as the nature of the internal structure linking its elements (physical, logical, etc.). A complex system is made by many components interacting in a network structure (Zio et al, 2016).

Most often, the components are physically and functionally heterogeneous, and organized in a hierarchy of subsystems that contributes to the system function. This leads to both structural and dynamic complexity, the former referring to the system design and the latter emerging from the system operation within its complex architecture.

Heterogeneity refers to the differences in the elements, their interconnections and roles within the system structure, often with high-connected core elements and low-connected periphery nodes.

Indicative types of vulnerable systems (1)

Societies

Organizations

Individuals

Coastal areasPorts

Indicative types of vulnerable systems (2)

- Societies: These are nations across the globe that lack the coping abilities to overcome shocks, threats and risks being caused by environmental factors, lack of political rights and social amenities. Indicative factors of vulnerable societies include bad governance, poor economic growth and lack of natural disaster control and management system (lorhen et al, 2021).
- Organizations: Flourishing organizations become weak to face threats, fierce competitions and risks among other forces, thus being restricted from competing at the domestic, international and global market. Indicative factors of vulnerable organizations include poor financial status, Covid-19 pandemic, shortsighted and poor leadership practices, failed policies and strategies, lack of required human capital, etc (lorhen et al, 2021).
- Individuals: Persons being harassed and fragile or becoming immigrants etc. Indicative factors of vulnerable individuals are poverty in the developing countries, increase in population, unemployment, diseases, hunger, violence and crises, lack of social and infrastructural facilities (lorhen et al, 2021).

Indicative types of vulnerable systems (3)

- □ Coastal areas: Coastal landforms, affected by short-term perturbations such as storms, generally return to their pre-disturbance morphology, implying a simple, morphodynamic equilibrium. Many coasts undergo continual adjustment towards a dynamic equilibrium, often adopting different 'states' in response to varying wave energy and sediment supply (Nicholls et al, 2007).
- Ports: Seaports are interfaces between the various transport modes and are typically combined transport centers. In addition, they are also multi-functional trade and industrial areas where goods are not only in transit but also handled, manufactured and distributed. In fact, ports are multi-dimensional systems which, to function adequately, must be integrated into global logistic[s] chains. An efficient port requires not only adequate infrastructure, superstructure and equipment but also good communications and especially a dedicated and skilled management team with a motivated and trained work force (UNCTAD, 1996).

Vulnerability definitions

- Chambers (1989) investigated vulnerability in terms of the external and internal side: the external approach constitutes risks, shocks and stress to which a system is subject to, while the internal approach is related with defenseless, lack of means to cope with damaging loss (becoming physically weaker, inexpensively insolvent, socially dependent, humiliated or expressively harmed etc.).
- □ Clark et al (2000) defined vulnerability as the risk of adverse outcomes to receptors or exposure unitssystems in terms of relevant changes in climate, other environmental variables and social conditions.
- According to the World Health Organization (2000) vulnerability is the degree to which a system is unable to anticipate, cope with, resist and recover from the impacts of disasters.
- Damas and Rayhan (2004) claimed that vulnerability is exposure to contingencies and stresses, and difficulty in coping with them.

Threats leading to vulnerability (1)

Various concepts are used in literature to express threats:

hazards, stresses, disasters, damages, contingencies, adverse effects.

Threats are a **potential forthcoming event** that a system may be vulnerable to.

To assess the threat, and consequently estimate how vulnerable is the system to the specific threat, it is necessary to (Ferreira, 2019):

- i. identify and distinguish its typology, its type of expression, as well as and the shielding techniques and measures (existing or planned) associated with it,
- ii. analyze the threat according to internal and external factors, and
- iii.to classify the threat according to the analysis made of its factors.

Threats leading to vulnerability (2)

Examples of threats:

- Natural hazards (tsunami, earthquakes)
- □ Human-induced factors (terrorism)
- Climate-change impacts (extreme events, sea level rise)
- □ Accidents (explosion, fires)

Threats leading to vulnerability (3) - Adger et al. (2006)

LHW-NTUA

Vulnerability approach	Objectives	Sources	
Antecedents			
Vulnerability to famine and food insecurity	Developed to explain vulnerability to famine in the absence of shortages of food or production failures. Described vulnerability as a failure of entitlements and shortage of capabilities.	Sen (1981); Swift (1989); Watts and Bohle (1993)	
Vulnerability to hazards	Identification and prediction of vulnerable groups, critical regions through likelihood and consequence of hazard. Applications in climate change impacts.	Burton et al. (1978, 1993); Smith (1996); Anderson and Woodrow (1998); Parry and Carter (1994)	
Human ecology	Structural analysis of underlying causes of vulnerability to natural hazards.	Hewitt (1983); O'Keefe et al. (1976); Mustafa (1998)	
Pressure and Release	Further developed human ecology model to link discrete risks with political economy of resources and normative disaster management and intervention.	Blaikie et al. (1994); Winchester (1992); Pelling (2003)	
Successors			
Vulnerability to climate change and variability	Explaining present social, physical or ecological system vulnerability to (primarily) future risks, using wide range of methods and research traditions.	Klein and Nicholls (1999); Smit and Pilifosova (2001); Smith et al. (2001); Ford and Smit (2004); O'Brien et al. (2004)	
Sustainable livelihoods and	Explains why populations become or stay poor	Morduch (1994); Bebbington (1999); Ellis (2000);	
vulnerability to poverty	based on analysis of economic factors and social relations.	Dercon (2004); Ligon and Schechter (2003); Dercon and Krishnan (2000)	
Vulnerability of social-ecological systems	Explaining the vulnerability of coupled human- environment systems.	Turner et al. (2003a, b); Luers et al. (2003); Luers (2005); O'Brien et al. (2004)	

Types of vulnerability

(1/2) (lorhen, 2021)

- Physical Vulnerability: It is related by the physical characteristics of the system. Depending on the type of the system it may refer to land degradation, typhoons, earthquakes, flood, hurricane, drought, storms.
- Political Vulnerability: It is prompted by the political status that the system may be related with (e.g. where there is no democratic and electoral process for the citizens to have access to political power and representation).
- Social Vulnerability: It arises as a result of rapid population growth, poverty and hunger, high level of ethnicity, low levels of education, gender inequality, lack of access to technological means and disintegration of social patterns. This can also include religion differences and marginalization.
- Economic Vulnerability: This can be determined by the income levels among individuals, the bargain power, price level, inflation rate, unemployment, Gross Domestic Product (GDP), Gross National Product (GNP) and exchange rate among others.

Types of vulnerability

(2/2) (lorhen, 2021)

- Environmental Vulnerability: It is related with the environmental characteristics of the system e.g. pollution, deforestation, fire disaster, critical habitats etc.
- Academic Vulnerability: This vulnerability arises due to lack of knowledge, expertise, conceptual experience in solving operational and routine problems at individual, group, organizational and national levels.
- Attitudinal Vulnerability: This type of vulnerability arises when individuals, organizations and nations have negative attitude to change and lack initiative and creativity of turning threats to opportunities.

LHW-NTUA

Vulnerability components

Vulnerability components

- Degree of losses and damages due to the impact of hazards;
- Degree of exposure to hazards, i.e., likelihood of being exposed to hazards of a certain degree and susceptibility to suffering losses and damages (this depends on the system robustness, which is the antonym of vulnerability);
- Degree of resilience, i.e., a measure of the ability of a system to anticipate, cope with/absorb, resist and recover from the impact of hazards.

(Zio 2016)

Hazards

Hazard is defined as a threat that can potentially

cause damage to systems (Dewan, 2013).

Hazards can take many forms (natural, humaninduced, environmental)

Hazards may be characterized by location, time, intensity, and frequency.

Groups	Sub-groups	Examples of main types
Natural	Geophysical	Earthquake, geophysically triggered mass movement, volcanic activity
	Hydrological	Flood, wave action, hydrometeorological triggered mass movement
	Meteorological	Storms, extreme temperature
	Climatological	Drought, wildfire, glacial lake outburst
	Biological	Air-, water-, and vector-borne diseases, animal and plant diseases, food-borne outbreaks, antimicrobial resistant microorganisms
	Extraterrestrial	Impact, space weather
Human-induced	Technological	Industrial hazard, structural collapse, fire, air pollution, infrastructure disruption, cybersecurity, hazardous materials (including radiological), food contamination
	Societal	Armed conflict, civil unrest, financial crisis, terrorism, chemical, biological, radiological, nuclear, and explosive weapons
Environmental	Environmental degradation	Erosion, deforestation, salinization, sea level rise, desertification, wetland loss/ degradation, glacier retreat/melting

(Saulnier et al. 2021)

Exposure

Systems need to be exposed to a hazard to be **directly or indirectly affected** by it (Saulnier et al. 2021). **Direct** effects include injury, illness, other health effects, evacuation and displacement, and economic, social, cultural, and environmental damages. **Indirect** effects refer to additional consequences over time that cause unsafe or unhealthy conditions from economic, infrastructure, social, or health and psychological disruptions and changes. One of the major challenges in disaster research is measuring who has been affected and when. Determining

which effects can be attributed to a disaster is complex, as there are multiple indirect pathways to an outcome.

Risk

Risk describes an uncertain event or condition that, if it occurs, has an effect on at least one objective (uncertainty about future changes) (PIANC, 2020).

Risk includes two dimensions to describe the **(future) consequences** potentially arising from the operation of the systems and their activities, and the **associated uncertainty** (Zio, 2016).

For purposes of decision making, it is necessary to provide a quantification of risk, i.e., of the consequences of the accident scenarios, e.g. measured in terms of losses, damages, injuries etc., and of their likelihood of occurrence quantified by some measure of uncertainty, e.g. in terms of probabilities (frequencies) (Zio, 2016). **Risk assessment methodologies** are often employed to help understand what can go wrong, estimate the likelihood and the consequences, and to develop risk mitigation strategies to counter risk (Ezell 2007).

Climate change (IPCC, 2018, Glossary)

Climate change refers to a change in the state of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties and that persists for an extended period, typically decades or longer. Climate change may be due to natural internal processes or external forcings such as modulations of the solar cycles, volcanic eruptions and persistent anthropogenic changes in the composition of the atmosphere or in land use.

The Framework Convention on Climate Change (**UNFCCC**), in its Article 1, defines climate change as: "a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods."

The UNFCCC makes a distinction between climate change attributable to human activities altering the atmospheric composition and climate variability attributable to natural causes.

Climate variability (IPCC, 2018, Glossary)

Climate variability refers to variations in the mean state and other statistics (such as standard deviations, the occurrence of extremes, etc.) of the climate on all spatial and temporal scales beyond that of individual weather events. Variability may be due to natural internal processes within the climate system (internal variability), or to variations in natural or anthropogenic external forcing (external variability).

Climate crisis

In November 2019, a group of more than 11,000 scientists from 153 countries named climate change an "emergency" that would lead to "untold human suffering" if no big shifts in action takes place.

JOURNAL ARTICLE

World Scientists' Warning of a Climate Emergency

FREE

William J Ripple ➡, Christopher Wolf ➡, Thomas M Newsome, Phoebe Barnard,
William R Moomaw Author Notes *BioScience*, Volume 70, Issue 1, January 2020, Pages 8–12,
https://doi.org/10.1093/biosci/biz088

Published: 05 November 2019

We declare clearly and unequivocally that planet Earth is facing a climate emergency. To secure a sustainable future, we must change how we live. This entails **major transformations** in the ways our global society functions and interacts with natural ecosystems.

Climate crisis

COVID-19 lockdowns significantly diminished transportation and consumption, but had very little impact on reversing the trends negative trends of planetary vital signs including temperature and greenhouse gases.

"Only **profound changes in human behavior** can meet these challenges and emphasize the need to move beyond the idea that global heating is a stand alone emergency, and is one facet of the worsening environmental crisis. This necessitates the need for transformational system changes and to focus on the root cause of these crises, the vast overexploitation of earth rather than just addressing symptom relief".

	JOURNAL ARTICLE EDITOR'S CHOICE		
	World Scientists' Warning of a Climate Emergency		
	2021 🖬		
Six areas where fundamental changes need to be made	William J Ripple ጁ, Christopher Wolf ጁ, Thomas M Newsome, Jillian W Gregg,		
Six dieds where fondamental enanges need to be made	Timothy M Lenton, Ignacio Palomo, Jasper A J Eikelboom, Beverly E Law, Saleemul Huq,		
(Ripple, 2021):	Philip B Duffy Show more		
	BioScience, Volume 71, Issue 9, September 2021, Pages 894–898,		
	https://doi.org/10.1093/biosci/biab079		
(1) energy — eliminating fossil fuels and shifting to renewables;	Published: 28 July 2021		
(2) short-lived air pollutants — slashing black carbon (soot), methane, and hy	ydrofluorocarbons;		
(3) nature — restoring and permanently protecting Earth's ecosystems to store and accumulate carbon and restore biodiversity;			

(4) food — switching to mostly plant-based diets, reducing food waste, and improving cropping practices;

(5) *economy* — moving from indefinite GDP growth and overconsumption by the wealthy to ecological economics and a circular economy, in which prices reflect the full environmental costs of goods and services; and

(6) human population — stabilizing and gradually reducing the population by providing voluntary family planning and supporting education and rights for all girls and young women, which has been proven to lower fertility rates.

Tackling Climate change

Mitigation

A human intervention to reduce emissions or enhance the sinks of greenhouse gases. (*IPCC*, *AR6*,*WGII*, 2022)

Adaptation

In human systems, the process of adjustment to actual or expected climate and its effects, in order to moderate harm or exploit beneficial opportunities. In natural systems, the process of adjustment to actual climate and its effects; human intervention may facilitate adjustment to expected climate and its effects.

A response or a process of adjustment to accommodate the actual or projected climate or the effects of climate change.

(PIANC, 2020)

Tackling Climate change

Mitigation

(IPCC, AR6,WGII, 2022)

and

A human intervention to reduce emissions or enhance the sinks of greenhouse gases.

Anthropogenic emissions: Emissions of greenhouse gases (GHGs), precursors of GHGs and aerosols caused by human activities. These activities include the burning of fossil fuels, deforestation, land use and land-use changes (LULUC), livestock production, fertilisation, waste management and industrial processes.

Greenhouse gases (GHG): Gaseous constituents of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at specific wavelengths within the spectrum of radiation emitted by the Earth's ocean and land surface, by the atmosphere itself and by clouds. This property causes the greenhouse effect.

Primary GHGs in the Earth's atmosphere:	Human-made GHGs:
Water vapour (H2O),	sulphur hexafluoride (SF6),
carbon dioxide (CO ₂),	hydrofluorocarbons (HFCs)
nitrous oxide (N2O),	chlorofluorocarbons (CFCs)
methane (CH4) and	perfluorocarbons (PFCs)
ozone (O3)	

Representative Concentration Pathways (RCPs)

Each RCP defines a specific emissions trajectory and subsequent radiative forcing (a radiative forcing is a measure of the influence a factor has in altering the balance of incoming and outgoing energy in the Earth-atmosphere system, measured in watts per square meter)

Representative Concentration Pathways (RCPs)

increase in temperature is

recognised as the

threshold at which

climate change becomes

dangerous

(a) _{6.0} Global average surface temperature change Mean over 2081-2100 historical **RCP2.6** 4.0 **RCP8.5** 39 (0°C) 2.0 RCP8. **RCP6.0** 42 RCP4.5 0.0 32 RCP2.6 -2.01950 2000 2050 2100 (IPCC, 2014)

LHW-NTUA

Where do the RCPs come from?

The RCPs were used in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) in 2014 as a basis for the report's findings. Previous IPCC assessment reports used a set of scenarios known as SRES (Special Report on Emissions Scenarios), which start with socioeconomic which from circumstances trajectories emissions and climate impacts are projected. In contrast, RCPs fix the emissions trajectory and resultant radiative forcing rather than the 28 socioeconomic circumstances.

Representative Concentration Pathways (RCPs)

LHW-NTUA

(Coast Adapt, Australia)

Shared Socioeconomic Pathways (SSPs)

The idea of shared socio-economic pathways (SSPs) is developed as a basis for new emissions and socio-economic scenarios. An SSP is one of a collection of pathways that describe alternative futures of socio-economic development in the absence of climate policy intervention. The combination of SSP-based socio-economic scenarios and RCP-based climate projections should provide a useful integrative frame for climate impact and policy analysis.

Socio-Economic Scenario

A scenario that describes a possible future in terms of population, gross domestic product (GDP), and other socio-economic factors relevant to understanding the implications of climate change.

challenges for mitigation ***** SSP 5: **★** SSP 3: (Mit. Challenges Dominate) (High Challenges) Fossil-fueled Regional Rivalry Socio-economic Development ***** SSP 2: (Intermediate Challenges) Middle of the Road 🗙 SSP 1: SSP 4: (Low Challenges) (Adapt. Challenges Dominate) Sustainability Inequality Socio-economic challenges for adaptation (O'Neill et al., 2014) **SSP1:** The sustainable and "green" pathway describes an increasingly sustainable world. Global commons are being preserved, the limits of nature are being respected. The focus is more on human well-being than on economic growth. Income inequalities between states and within states are being reduced. Consumption is oriented towards minimizing material resource and energy usage.

SSP2: The "Middle of the road" or medium pathway extrapolates the past and current global development into the future. Income trends in different countries are diverging significantly. There is a certain cooperation between states, but it is barely expanded. Global population growth is moderate, leveling off in the second half of the century. Environmental systems are facing a certain degradation.

SSP3: Regional rivalry. A revival of nationalism and regional conflicts pushes global issues into the background. Policies increasingly focus on questions of national and regional security. Investments in education and technological development are decreasing. Inequality is rising. Some regions suffer drastic environmental damage.

SSP4: Inequality. The chasm between globally cooperating developed societies and those stalling at a lower developmental stage with low income and a low level of education is widening. Environmental policies are successful in tackling local problems in some regions, but not in others.

SSP5: Fossil-fueled Development. Global markets are increasingly integrated, leading to innovations and technological progress. The social and economic development, however, is based on an intensified exploitation of fossil fuel resources with a high percentage of coal and an energy-intensive lifestyle worldwide. The world economy is growing and local environmental problems such as air pollution are being tackled successfully.

30

RCPs and SSPs

The SSPs contain a range of baseline scenarios spanning between 5.0 and 8.5 W/m2 of radiative forcing by 2100. They also specifically consider mitigation scenarios where forcing is limited to 6.0, 4.5, 3.4, 2.6 and 1.9 W/m2. As computational limitations prevent scientists from running all the SSPs through every climate model, a number of "marker" scenarios were chosen at different forcing levels to be used in CMIP6 – the global climate modelling exercise being undertaken by IPCC AR6.

CMIP6 will include the same four forcing levels found in the RCPs – 8.5, 6.0, 4.5, and 2.6 – in addition to new 1.9, 3.4 and 7.0 forcing scenarios. Both the 8.5 and 7.0 scenarios are taken from no-policy baseline emission scenarios in the SSP database, while all the other forcings use emissions scenarios where some level of mitigation is employed.

Shared Socioeconomic Pathways

Climate change Tackling Climate change (IPCC, AR6,WGII, 2022) Adaptation

In human systems, the process of adjustment to actual or expected climate and its effects, in order to moderate harm or exploit beneficial opportunities. In natural systems, the process of adjustment to actual climate and its effects; human intervention may facilitate adjustment to expected climate and its effects.

A response or a process of adjustment to accommodate the actual or projected climate or the effects of climate change.

(PIANC, 2020)

Vulnerability

The propensity or predisposition to be adversely affected. Vulnerability encompasses a variety of concepts and elements including sensitivity or susceptibility to harm and lack of capacity to cope and adapt. (IPCC, AR6, WGII, 2022)

Vulnerability indicates the degree to which a system is susceptible to, and unable to cope with, adverse climate change effects, including climate variability and extremes. Vulnerability is a function of the character, magnitude and rate of climate change and variation to which an asset, operation or system is exposed, its sensitivity and its adaptive capacity. (PIANC, 2020)

Resilience

The capacity of interconnected social, economic and ecological systems to cope with a hazardous event, trend or disturbance, responding or reorganising in ways that maintain their essential function, identity and structure. Resilience is a positive attribute when it maintains capacity for adaptation, learning and/or transformation (Arctic Council, 2016). *(IPCC, AR6,WGII, 2022)*

Vulnerability factors (Havko et al, 2017)

Disasters' particularities and their impacts (ability of disasters cause dysfunction of system elements)–
 exposure,

Characteristics of the system elements and its susceptibility to effects of a disaster – susceptibility/sensitivity,

Ability or capacity of the system in conjunction with society to adapt to changing conditions –adaptive
 capacity

Vulnerability framework

(Turner et al, 2003)

Exposure (Havko et al. 2017)

- Ability to cause damage which is associated with an occurrence of particular crisis event and its intensity, type, mode of action, range and in overall with its destructive effects. E.g. earthquake with different intensity may have various destructive impacts.
- Duration of a disaster which is the expected period of exposure to the effects of a disaster. It is also a period necessary to restore the required level of operational state of the system.
- Activatability which is the time necessary for threat activation. The longer this time period is, the less devastating a disaster could be. In cases with longer activation period it is possible to adopt some mitigation measures (e.g. warning, evacuation, etc.).

Susceptibility (Havko et al. 2017)

- Sensitivity which refers to the tendency of a system to be functionally damaged by effects of particular disaster. This characteristic is related to the ability of the system to resist to and cope with expected negative effects on its own.
- Protection which can be seen as additional feature to the "sensitivity". "Sensitivity" is about own ability of an element to handle situation On the other hand "protection" takes into account external measure which are already applied inside or outside the system to protect it, mainly with aim of decreasing the negative effects of a disaster.
- Accessibility which is the level of simplicity with which the system can be affected by a disaster. (e.g. location)

Adaptive capacity (Havko et al. 2017)

- Redundancy which is the ability of other elements of the system take over the functions of failed elements. Redundancy is closely linked to the density of the system and its structure. For example, there is a remarkable difference in redundancy of road and rail transportation network. From such point of view is rail network and its elements more vulnerable than the road elements.
- □ Availability of resources which refers to the access to the sources required
- Capability of rapid response which is the ability of responsible authorities and rescue services
 (professional and voluntary) effectively (1) prevent effects of disasters by adoption of rapid measures or (2)
 remove impacts of such events in short period of time and recovery to the previous state.

Vulnerability = Exposure + Sensitivity + Adaptive capacity Susceptibility

Sensitivity

The **degree** to which a system or species is affected, either adversely or beneficially, by climate variability or change. The effect may be direct (e.g., a change in crop yield in response to a change in the mean, range, or variability of temperature) or indirect (e.g., damages caused by an increase in the frequency of coastal flooding due to sea level rise). (*IPCC*, *AR6*,*WGII*, *2022*)

Exposure

Susceptibility

Susceptibility indicates whether an asset, operation or system is **prone to** harm, disruption or other adverse effects as a result of changes in meteorological, oceanographic or hydrological characteristics. (*PIANC*, 2020)

The presence of people; livelihoods; species or ecosystems; environmental functions, services, and resources; infrastructure; or economic, social, or cultural assets **in places and settings** that could be adversely affected. (*IPCC*, *AR6*, *WGII*, *2022*)

Adaptive capacity

The ability of systems, institutions, humans and other organisms to adjust to potential damage, to take advantage of opportunities or to respond to consequences. (MA, 2005),(*IPCC*, *AR6*,*WGII*, 2022)

Adaptive capacity means having the **ability to adjust** to change. For example, there may be redundancy or resilience within the system that means a change or impact can be accommodated. Having adequate adaptive capacity can make the difference between an incident or event being inconvenient and potentially catastrophic. (*PIANC, 2020*)

Definition

A vulnerability assessment means **comparing potential future threats to existing capacities and desired protection levels** (Pursiainen, 2018; Silvast et al., 2021).

Vulnerability assessments can take many forms dependent on the field from which they are drawn (i.e., climate change adaptation, disaster risk management, or poverty and development) (Weis et al. 2016). The bigger the system is and the more interconnected is to other systems, the more difficult it may be to recognize its vulnerabilities.

Example – Seaport Vulnerability assessment (PIANC, 2020)

Port Example Climate Change Vulnerability Assessment SCENARIO 1 of 3	Compa expos hazarc horizo ↑↑ Si ↑ Incr → No ♥ Red ♥♥ Si	ared to t ure to th <u>change</u> n? gnificar ease change luction gnificar	the base he poten e within ht increa	eline, <u>hov</u> Itial clim the plan Ise	Consid existin <u>vulnera</u> ↑ Incre → No c ♥ Redu	 Significant increase No change Reduction 									
Examples of relevant parameters or processes → Examples of critical assets, operations or systems ↓	Extreme heat	Sea level rise	Wind speed	Wave conditions	Seasonal rainfall	Extreme heat	Sea level rise	Wind speed	Wave conditions	Seasonal rainfall					
Berthing and loading, offloading cargo	^	1	->>	->>	^	1	⇒	⇒	⇒	1					
Access to berth (e.g. navigation channels)	^	↑	⇒	⇒	^	⇒	♦	⇒	₽	1					
Maritime structures	^	1	⇒	->>	^	->>	1	->>	⇒	->>					
Quay equipment (e.g. cranes, ship loaders/unloaders, marine loading arms)	^	↑	-⇒	->>	††	↑	⇒	-≫	⇒	1					
Trucks/in-terminal vehicles	^	1	→	→	^	1	→	-⇒>		1					
Onshore structures	^	1	-⇒>	-⇒>	^	-⇒	⇒	-⇒	⇒	-⇒>					
Storage areas	^	1	-⇒	-⇒	^	1	⇒	⇒	⇒	1					
Onshore equipment (e.g. stacking or reclaiming machines, conveyors, rubber- tyre gantry cranes)	^	↑	⇒	->>	††	↑	-⇒>	>>	⇒	↑					
Electrical power systems	^	1	->>	->>	^	->>	-⇒	⇒	⇒	->>					
Drainage systems	^	1	-⇒>	⇒	^	-⇒>		-⇒	⇒	^					
Fuel systems	^	1	→	→	^	1		>	⇒	-⇒					
Road/rail access and internal road network	††	↑	⇒	⇒	††	1	⇒	⇒	⇒	↑					
Facilities for workers	^	1	-⇒	->>	^	ተተ	>		>	-⇒>					

(Kienberger et al. 2014)

Vulnerability Index (Havko et al, 2017)

 $VI = f(E, S, AC) = f[f(CH_{ACD}, CH_{DD}, CH_{Ac}), f(CH_s, CH_P, CH_{Acc}), f(CH_R, CH_{AR}, CH_{CRR})]$

where:

VI: Vulnerability Index

E: Exposure

S: Susceptibility

AC: Adaptive Capacity

CH_{ACD}: Characteristic – Ability to Cause Damage

 $\mathsf{CH}_{\mathsf{DD}}$: Characteristic – Duration of a Disaster

 $\mathsf{CH}_{\mathsf{Ac}}:\mathsf{Characteristic}-\mathsf{Activatability}$

 $\mathsf{CH}_{\mathsf{S}}:\mathsf{Characteristic}-\mathsf{Sensitivity}$

CH_P: Characteristic – Protection

CH_{Acc}: Characteristic – Accessibility

CH_R:Characteristic – Redundancy

CH_{AR}: Characteristic – Availability of Resources

CH_{CRR}: Characteristic – Capability of Rapid Response

Coping mechanisms

(lorhen, 2021)

- Functional Socio- Economic and Political Institutions ensuring that services like education, water, roads, health care, investment, production and diversification among others are available and effective to provide safety nets.
- Effective Natural Disaster Control and Management Programs for natural disaster issues like earthquake, flood, typhoons, hurricanes, explosions and fire in line with the climatic, environmental and man-made disaster of a particular region
- Effective Educational System to provide citizens with the basic knowledge, skills and experience, the weapon to fight and overcome ignorance
- **Technological Expansion** for employing advanced technology tools
- Strategic Leadership to drive the systems in the right direction with a futuristic mindset.

Coastal systems

- Today, approximately 3 billion people **about 50% of the world's population** live within 200 km of a coastline.
- In Greece, almost 85% of the population live within 50 km of a coastline.
- Greece: 13.676 km of coastline (11th globally)

Population of coastal cities around 1950 and in 2020.

(Barragan et al., 2015)

Protocol for Mediterranean Sea: Integrated Coastal Zone Management

Coastal zone: the geomorphologic area either side of the seashore in which the interaction between the marine and land parts occurs in the form of complex ecological and resource systems made up of biotic and abiotic components coexisting and interacting with human communities and relevant socio-economic activities.

L**hw-**NTUA

Coastal flooding at Rio (https://www.patrasevents.gr/)

Coastal flooding at Norther Crete (https://www.aera.gr/)

Vulnerability in terms of climate change

Thieler & Hammar-Klose, 1999; Gornitz et al., 1994:

Where:

a: the geomorphologyb: the coastline erosion-deposition ratec: the coastal sloped: the relative sea-level rise ratee: the mean wave heightf: the mean tide range.

50

Coastal vulnerability assessment

Coastal vulnerability components

□ Present vulnerability, pressures by hazards regarding existing condition of coastal areas

Future vulnerability, pressures by hazards regarding future threats and future condition of coastal areas

due to climate change impacts (e.g. sea level rise, extreme storm events etc)

Coastal Vulnerability Index

VI = E * S * AC

Where:

VI: Coastal Vulnerability (sub-)IndexE: ExposureS: SusceptibilityAC: Adaptive Capacity

Physical sub-index PhCVI

Technical sub-index TCVI

Environmental sub-index ECVI

Galaxies Socio-economic sub-index SOCVI

PhCVI or TCVI or ECVI or SOCVI=E*S*AC

No.	Parameters
1	Wave characteristics (e.g. significant wave height, period etc)
2	Geomorphology (e.g. type of beach sediment, thickness of layer sediment etc)
3	Coastal evolution (erosion or deposition)
4	Tide (meteorological or astrological)
5	Coastal slope (land or sea-bottom)
6	Beach width
7	Distance from vegetation
8	Number of extreme events
9	Number of disasters
10	Temperature
11	Precipitation

Technical Parameters

No.	Parameters
1	Distance from back-beach structures
2	Distance from coastal road
3	Percentage of beach coverage by permanent structures
4	Coastal structures (e.g. breakwaters)
5	Port infrastructure

Environmental Parameters

No.	Parameters
1	NATURA 2000
2	Atmosphere indicators (air pollutants)
3	Number of critical habitats
4	Distance from aquaculture

Socio-economic Parameters

No.	Parameters
1	Population characteristics (e.g. age, percentage of
	unemployment, type of employment, housing
	characteristics etc)
2	Distance from archeological monuments
3	Land use
4	Distance from capital / settlements
5	Cost by disasters / extreme events

Parameter estimation

- Segregation of each area is required for a detailed analysis to address the physical (e.g. hydrological and geomorphological features, wave climate and sediment transport), environmental (e.g. distances from critical habitats) and socio-economic (e.g. land use) discrepancies identified along the areas under investigation
- 2. Calculation of parameters' values (numerical models, open-source data etc)
- 3. Classification approaches for parameters' values (type of classification, number of classes, spatial scale etc)
- 4. Mapping parameters' values (GIS)

CVI Example

Case study: Coastal Zone of Municipality of Thivaion

CVI Example

Case study: Coastal Zone of Municipality of Thivaion

Example

Physical parameter: Significant wave height

LHW-NTUA

(Tsaimou et al, 2022)

61

Example

Coastline erosion-deposition

Current vulnerability

Future vulnerability

Port vulnerability

"A port is a location on a coast or shore containing one or more **harbors** where ships can dock and transfer people or cargo to or from land".

natural artificial

(Dwarakish and Salim, 2015)

A part of the ocean, a lake, etc., that is next to land and that is protected and deep enough to provide safety for ships

Ports:

- Play an important role in the worldwide economy as essential nodes in the global trading network.
- Represent long-lasting and critical infrastructure that is sensitive to climate change.
- Provide jobs to millions of people worldwide.
- Differ in size and type.

Fishing shelter in Ormideia, Cyprus Capacity: 35 fishing vessels (https://www.checkincyprus.com/)

The port of Heraklion, Greece Annual passenger capacity of up to 0.5 million for cruise tourism ~2 million passengers per year (https://www.cretapost.gr/)

Rotterdam port, The Netherlands 10th globally 14.35 million TEUs in 2020 (https://www.holland.com/) ©Guido Pijper

· 7	Ports of international interest: 16	Ports of greater interest: 25
	Ports of national interest: 16	Ports of local interest: Rest
3 · · · · · · · · · · · · · · · · · · ·	76.	

1.100 port facilities

Port vulnerability

64

B Port vulnerability

"Their location along coasts, rivers or lakes involves high exposure to a wide variety of hazards that include sea level rise, changes in extreme sea levels (such as wave set-up or storm surge) and flooding; these hazards may impact the port itself, the regional economy, the operation of supply chains and coastal populations". (Ng et al., 2018)

Impacts in port infrastructure and operations:

- SLR may lead to overtopping
- Increase in frequency of extreme events affects ports' susceptibility
- pH alteration may lead to eroded structures
- Ice melting creates different transportation routes in the Northern Hemisphere, affecting maritime transportation
- The floods of 2015 damaged the Port of Chennai, India (Becker et al., 2018)

(https://www.thehindubusinessline.com/)

 Hurricane Maria in 2017, caused
 infrastructure damage and port shutdown
 in the Caribbean (Caribbean Development and Cooperation Committee, 2018)

L**HW-**NTUA

Superstorm Sandy in 2012, which shut down the Port of New York and New Jersey for more than 8 days (Smythe, 2013)

Aerial photo shows the damage to an amusement park left in the wake of Superstorm Sandy, in Seaside Heights, N.J. (*AP Photo/Mike Groll*)

Goal: To enhance mitigation of and adaptation to climate change

Port sector

• World Ports Climate Declaration

Commitment to reduce CO₂ emissions and improve air quality of ports Target areas: CO₂ emissions from ocean emissions from ocean-going vessels CO₂ emissions from port operations and development CO₂ emissions from hinterland transport Use of renewable energy Carbon footprint Implementation strategies

Port vulnerability

A global program to provide ports worldwide with a framework to mitigate their impact on climate change.

The WPCI was launched in 2008 by the International Association of Ports and Harbours (IAPH) and regional Port Organizations.

B Port vulnerability

Enhanced climate resilience is needed through adaptation strategies

They are still at the planning stage for most seaports

Example

(Becker et al., 2012)

The stakeholders of the port of Rotterdam developed and adaptation plan to secure the city and the port operations up to 2025 regarding climate change impacts. The port of Rotterdam is one of the safest ports in the world.

(Rotterdam Climate Proof, 2013)

Rotterdam: Adapting to climate change | Institution of Civil ... https://myice.ice.org.uk/.../case-studies/rotterdam-adapting-to-climate-change -

As part of RCP in 2013, RCI published its Climate Change Adaptation Strategy. It details the main methods Rotterdam intends to utilise to achieve a **climate-proof** city. The priority for outer-dike areas of the city is to 'build with nature', providing flood protection including 'flood-proof' buildings and public areas, and ... $\Delta \epsilon$ its $\pi \epsilon \rho i \sigma \sigma \delta \tau \epsilon \rho a$

Rotterdam

Vulnerabilities

Rotterdam, the Netherlands' second city with a population 619,000, is one of the most urbanised parts of the country. It also contains the Port of Rotterdam, which extends over $40k...\Delta\epsilon$ its περισσότερα Much of Rotterdam's economic success and development is linked to its location on the agriculturally rich Rhine–Meuse Delta, where the River Maas meets the North Sea, offering shipping links to the Atlantic and inlan... Δείτε περισσότερα

Storm surge barriers are being optimised, rainwater storage to delay drainage is being created (including green roofs and facades, less paving and more flora in public streets and neighbourhoods, water squares and infiltration zones integrated into the infrastructure).

Diagram of Rotterdam's green and blue adaptation infrastructure (*Rotterdam Climate Initiative*, 2013)

These green and blue adaptation measures demonstrate best practice in the use of hard and soft infrastructure maximising natural flood attenuation mechanisms.

Port vulnerability

In the adaptation framework, a necessary step is **risk analysis** that addresses the issue of "adapting to what".

Such an assessment will provide information on the resilience of an existing port or a new investment in the upcoming decades, focusing on the major impacts of climate change that contribute to increased risk in terms of economic, social and environmental consequences.

L**hw-**Ntu*l*

Fig. 3 | Climate risk for the world port sector in the year 2100 under RCP8.5. a-c, Details of future climate risk for ports worldwide (a), for Caribbean and North American ports (b) and for Asia-Pacific ports (c). The marker size reflects the change in risk level.

68

B Port vulnerability

Prior to the detailed risk analysis, understanding of climate drivers, susceptibility and vulnerability of port infrastructure and operations are needed.

•Set goals

- •Identify critical assets, operations and systems
- •Indicate the susceptibility of the assets, operations and systems
- •Determine adaptation objectives
- Consider data needs

Stage 3

LHW-NTUA

Agree approach to vulnerability assessment
Establish changes in susceptibility
Agree on indicators
Define the scale of vulnerability for each indicator
Measure vulnerability

Susceptibility indicates whether an asset, operation or system is prone to harm, disruption or other adverse effects as a result of changes in meteorological, oceanographic or hydrological characteristics.

Vulnerability indicates the degree to which a system is susceptible to, and unable to cope with, adverse climate change effects, including climate variability and extremes. Vulnerability is a function of the character, magnitude and rate of climate change and variation to which an asset, operation or system is exposed, its sensitivity (see criticality) and its adaptive capacity.

Define the climate variables causing impacts to measure susceptibility
Understand baseline conditions
Explore possible future climate conditions
Analyze data to understand the climate change hazard

After all 3 Stages: Design adaptation pathways

Port vulnerability

Stage 1: Identify objectives

- High level objectives
- Medium to long-term

Example:

Make the port fully resilient to the impacts of climate change by 2025 and ensure that it remains one of the safest port cities in the world.

歸 Port vulnerability

Stage 1: Identify critical assets

(PIANC, 2020)

I Port vulnerability

Stage 1: Identify critical assets

Maritime and inland port and navigation infrastructure		Key facts						Critical	lity	Susceptibility to hazards causing impacts									Key facts										
		Geometrical data		Responsible department or organisation							aves	T				≥	~		Des	Design data		Asset conditio		n Performanc		ity			
		Location	Depth (m relative to OD)	Elevation (m relative to OD)	Manæement	Operation and maintenance	Not cirtical	Unlikely	Probably Yes	Flooding	Overtopping	Flow velocities/extreme w	Changes in bathymetry	Bed or bank erosion	Fog or reduced visibility	Changes in wind	Extreme heat, also humidi	Changes in water chemistr	Changes in biology	Design life (years)	Date of construction Bacidual life	Good	Moderate	Poor	Maintencance cost	Performance against target	Available adaptive capac		
			Channel / fairway / waterway (natural)																									\square	
	Ope	erational use or	Channel / fairway / waterway (maintained; dredged)																								\square	
	modific	ation of water area	Dredged material aquatic disposal or placement sit	e																								\square	
			Mooring areas (outside the harbour)																									\square	
		1	Anchorage																										
		Structures	Breakwater, wave chambers																										
			Dolphins																										
Ĕ			Current deflector																										
SR			Storm surge barrier																										
Z			Aids to Navigation																										
т.	Accete		Fuelling; re-fuelling; bunkering barge																										
Ē	ASSELS	tical sustants and util	Monitoring equipment, telemetry, MET																										
£		sical systems and diff	Scour protection																										
<u>د</u>		Plant and equipment	Dredging plant																										
۳. Z			Natural habitat features																										
ARI		Resources	Created or enhanced habitat features																										
٤			Archaeological or heritage resources																										
			Pilotage																										
			Marker buoys navigation aids																										
			Dredging / disposal																										
		Operations	Maintenance of infrastructure																										
			Recreational use																										
			Sailing / water sports events																										
			Marker buoys navigation aids water sports events																										

(PIANC, 2020)
Stage 1: Determine criticality of assets

Implications for: Scale of impact:	Safety	Economic effects; business continuity	Public effects and local community	Environment sustainability and compliance	Critical?
Catastrophic	Risk of large numbers of serious injuries or loss of life	Loss or degradation would risk long-term viability of business including supply chains	Essential services lost, daily life becomes intolerable, unacceptable physical suffering	Irrecoverable damage, proven breach, prospect of corporate penalty	Yes
Major	Risk of isolated instances of serious injuries or loss of life	Loss or degradation would have serious effects on business requiring significant remedial action	Severe disruption of essential services and hence daily life, high levels of physical suffering	Severe and continuing loss, significant management effort needed to deal with compliance failure	Probably
Moderate	Risk of small numbers of injuries	Intervention needed to protect business continuity	Frequent disruption of essential services; daily life difficult, moderate levels of physical suffering	Minor, reversible damage, action needed on issues of compliance	Unlikely
Minor or insignificant	Risk of near misses or minor injuries	Isolated difficulties (e.g. in supply chain, replacements or alternatives exist)	Intermittent disruption of essential services and daily life, low levels of physical suffering	Negligible damage, minor breaches, easily resolved	Not critical

(PIANC, 2020)

	Maritime and inland p	ort and navigation infrastructure	Location	Depth (m relative to OD)	Elevation (m relative to OD)	Management	Operation and maintenance	Not cirtical	Unlikely	Probably	Yes
		Channel / fairway / waterway (natural)									
		Channel / fairway / waterway (maintained; dredge	d)							í – †	
0	perational use or	Dredged material aquatic disposal or placement sit	te								
moun	ication of water area	Mooring areas (outside the harbour)									
		Anchorage									
		Breakwater, wave chambers									
		Dolphins									
	Structuros	Current deflector									
	Structures	Storm surge barrier									
		Aids to Navigation									
Assots		Fuelling; re-fuelling; bunkering barge									
Assets	tical systems and util	Monitoring equipment, telemetry, MET									
	sical systems and ath	Scour protection									
	Plant and equipment	Dredging plant									
		Natural habitat features									
	Resources	Created or enhanced habitat features								$ \rightarrow $	
		Archaeological or heritage resources									
		Pilotage								$ \rightarrow $	
		Marker buoys navigation aids								\vdash	
		Dredging / disposal								\vdash	
	Operations	Maintenance of infrastructure								⊢−−∔	
		Recreational use								⊢−−∔	
		Sailing / water sports events								⊢−−∔	
		Marker buoys navigation aids water sports events								шL	

Stage 1:Identify hazards

		Susceptibility to hazards causing impacts														
Flooding	Overtopping	Flow velocities/extreme waves	Low river flow	Changes in bathymetry	Bed or bank erosion	Fog or reduced visibility	Changes in wind	Extreme cold, ice or icing	Extreme heat, also humidity	Changes in water chemistry	Changes in biology					

- Flooding
- Overtopping
- Flow velocities
- Extreme waves
- Low river flow

٠

- Changes in bathymetry
- Bed or bank erosion
- Fog/reduced visibility
- Changes in wind
- Extreme cold, ice or icing
- Extreme heat, also humidity (magnitude, duration, frequency)
- Changes in water chemistry (acidity, salinity)
 - Changes in biological character (vegetation growth rates, species migration, invasive species)

Hazards

+ Any other such as Heavy rainfall, Electric storms

•Flooding due to overwhelmed drainage systems or high groundwater levels

- •Overtopping and flooding due to high river flow levels, high tide or storm surge
- •High in-channel river flow velocities or changes in sea state (extreme waves, agitation)
- •Fog or other reduced visibility, for example due to blizzard conditions or sandstorms

Specification of hazards

Stage 1:Indicate susceptibility

					Critic	cality				Susc	eptib	oility t	o haz	ards	ausin	imp imp	acts							Key fa	cts			
										vaves							lity	uy		De	sign d	ata	Asse	t cond	lition	Perform	nance	city
	N	Aaritime and Inland p	oort and navigation infrastructure	Not cirtical	Un likely	Probably	Yes	Flo oding	Overtopping	Flow velocities/extreme v	Low river flow	Changes in bathymetry	Bed or bank erosion	Fogor reduced visibility	Changes in wind	Extreme cold, ice or icing	Extreme heat, also humid	Changes in water chemist	Changes in biology	Design life (years)	Date of construction	Residual life	Good	Moderate	Poor	Maintencance cost	Performance against target	Available adaptive capa
	Quay wall (i)						~	1	~	\checkmark		~	~	~	~	1		~		50	1994	25		1		+	×	××
		Quay wall (ii)				1					1	1	~	1	1		~		50	2014	45	1			ţ	 	 Image: A set of the set of the	
N CE	Structures		Fenders			\checkmark								1	1	1	\checkmark	<		15	2014	10	~			ţ	~	>
RFA N 2	Accote		Ladders			1								1	\checkmark	\checkmark	\checkmark	<		15	2014	10	1			ţ	>	>
ATB ANA	Assets		Slipway	\checkmark																								
RIN		Physical systems	Cathodic protection				\checkmark						\checkmark			\checkmark		1		10	2014	5	1			ţ	 	 Image: A set of the set of the
L' R	Resources Heritage resource (Lighthouse) Beach nourishment Pilotage Dredging / disposal		Heritage resource (Lighthouse)				1	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark			N/A	1950	N/A		~		1	 Image: A start of the start of	×
N PA					\checkmark			\checkmark	\checkmark	~	1	\checkmark						~	15	2018	14	~			ŧ	-	-	
2 2			Pilotage				~			\checkmark	1	1		1	1	1				N/A	N/A	N/A	N/A	N/A	N/A	ţ	~	>
ΔĘ					1				\checkmark		\checkmark	\checkmark	\checkmark	\checkmark					N/A	N/A	N/A	N/A	N/A	N/A	1	×	XX	
-	Operations	Sailing / water sports events		1																								
			Marker buoys navigation aids water sports events		~																							

Legend	High	Moderate	Low
Increasing	1	1	
Stable	+	\Rightarrow	1
Reducing	+	-	-

(PIANC, 2020)

Stage 2: Measure susceptibility

LHW-NTUA

•Link climate parameters to impacts to define susceptibility

(PIANC, 2020)

- o Climate data
- o Environmental data
- o Infrastructural data
- o Socioeconomic data

		Hs at 20m depth	
	Port	Range	Direction
	1	4.25-4.75	NE
e.g.	2	3.25-3.75	NW
	3	6.75-7.75	SW
	4	3.25-3.75	S

•Explore projections to estimate future state

Use of global climate models, hydrodynamic models, projections from literature or estimations

77

Stage 3: Identify vulnerability

Stage 3 brings together the collated information on critical assets, operations and systems (from Stage 1) and the understanding about projected changes in the climate parameters and processes to which these assets, operations and systems are susceptible (from Stage 2), to identify and assess potential risks associated with climate change.

A vulnerability assessment involves, for each climate change scenario as appropriate:

•Determining whether the projected changes in relevant climate parameters and processes highlighted in Stage 2, will lead to a change in the susceptibility of any of the critical assets, operations or systems identified in Stage 1.

•Assessing whether vulnerability is likely to increase within the adaptation planning horizon when factors such as proximity to thresholds and the availability of adaptive capacity are taken into account.

Port Vulnerability Index

LHW-NTUA

Port Vulnerability Index

- Development of PVI has followed the CVI rationale.
- Paradigms for all over the world, mostly commercial ports of international importance.
- Expert judgement is used to evaluate vulnerability.
- Climate, socioeconomic and technical data are considered.
- The common goal is to assess vulnerability, thus improving ports' resilience and planning for the future.

Year	Study area	Researchers
2011	136 ports globally	Hanson S. et al.
2011	2 ports, New York & New Jersey	McLaughlin B. et al.
2013	Ports in Australia	Nursey-Bray M. et al.
2014	4 international ports	Hsieh C. H. et al.
2015	Port Kembla and adjacent area, Australia	Chhetri P. et al.
2016	3 ports, East Asia	Dong-Taur Su et al.
2017	Methods	McIntosh R. D. & Becker A.
2018	Fishing shelters, Lesvos, Greece	Kontogianni A. et al.
2019	22 ports in North Atlantic, USA	McIntosh R. D. & Becker A.
2020	22 ports in North Atlantic, USA	McIntosh R. D. & Becker A.
2021	Port Mobile, Alabama, USA.	Abdelhafez M., et al.

Examples of indicators

Indicator	Description	Units	Data Source				
Average.Cost.of.Storm.Events	Average cost of property damage from storm events in the port county since 1950 with property damage > \$1 Million	\$	NOAA Storm Events Database				
Channel.Depth	The controlling depth of the principal or deepest channel at chart datum	A (over 76 ft) to Q (0-5 ft) in 5-foot increments	World Port Index (Pub 150)				
Containership.Capacity	Container Vessel Capacity	calls x DWT	MARAD: Vessel Calls at U.S. Ports by Vessel Type				
Disaster.Housing.Assistance	The total disaster housing assistance of Presidential Disaster Declarations for the port county since 1953	Declarations	FEMA: Disaster Declarations				
Entrance.Restrictions	Presence or absence of entrance restrictions	Tide, Swell, Ice, Other	World Port Index (Pub 150)				
Environmental.IndexESI.	Environmental Sensitivity Index (ESI) shoreline sensitivity to an oil spill for the most sensitive shoreline within the port	ESI Rank (1.00 - 10.83)	NOAA Office of Response and Restoration				
Gas.Carrier.Capacity	Gas Carrier Capacity	calls x DWT	MARAD: Vessel Calls at U.S. Ports by Vessel Type				
Harbor.Size	Harbor Size	Large, Medium, Small, Very-Small	World Port Index (Pub 150)				
Hundred. Year. High. Water	1% annual exceedance probability high water level which corresponds to the level that would be exceeded one time per century, for the nearest NOAA tide station to the port	m above MHHW	NOAA Tides and Currents: Extreme Water Levels				
Hundred.Year.Low.Water	1% annual exceedance probability low water level for the nearest NOAA tide station to the port, which corresponds to the level that would be exceeded one time per century	m below MLLW	NOAA Extreme Water Levels				
Marine.Transportation.GDP	County Marine Transportation GDP	\$	NOAA Office for Coastal Management				
Marine.Transportation.Jobs	Number of Marine Transportation Jobs in the port county	number of jobs	NOAA Office for Coastal Management				
Number.of.Critical.Habitat.Area	Number of Critical Habitat Areas within 50 miles of the port	Areas	U.S. Fish & Wildlife Service				
Number.of.Cyclones	Number of cyclones that have passed within 100 nm of the port since 1842	Number of cyclones	NOAA Historical Hurricane Tracks Tool				
Number.of.Disasters	Number of Presidential Disaster Declarations for the port county since 1953	Disaster Type	FEMA: Disaster Declarations				
Number.of.Endangered.Species	Number of Threatened or Endangered Species found in port county	Species	U.S. Fish & Wildlife Service				
Number.of.Hazmat.Incidents	Number of Hazardous Materials Incidents in port city since 2007	Number of Incidents	U.S. DOT Pipeline and Hazardous Materials Safety Administration				
Number.of.Storm.Events	Number of storm events in port county w/ property damage > \$1M	events	NOAA Storm Events Database				
Overhead.Limits	Presence or absence of overhead limitations	Y/N	World Port Index (Pub 150)				
Percent.of.Bridges.Deficient	Percent of bridges in the port county that are structurally deficient or functionally obsolete	%	US DOT FHA National Bridge Inventory				
Pier.Depth	The greatest depth at chart datum alongside the respective wharf/pier. If there is more than one wharf/pier, then the one which has greatest usable depth is shown.	A (over 76 ft) to Q (0 - 5 ft) in 5-foot increments	World Port Index (Pub 150)				
Population.Change	Rate of population change (from 2000-2010) in the port county, expressed as a percent change	%	NOAA Office for Coastal Management				
Population.Inside.Floodplain	Percent of the port county population living inside the FEMA Floodplain	%	NOAA Coastal County Snapshots				
Projected.Change.in.Days.Abov e.Baseline.Extremely.Hot.Temp erature	The percent change from observed baseline of the average number of days per year above baseline "Extremely Hot" temperature projected for the end- of-century, downscaled to 12km resolution for the port location	%	US DOT CMIP Climate Data Processing Tool				
Projected.Change.in.Number.of. Extremely.Heavy.Precipitation.E vents	The percent change from observed baseline of the average number of "Extremely Heavy" Precipitation Events projected for the end-of-century, downscaled to 12km resolution for the port location	%	US DOT CMIP Climate Data Processing Tool				
Sea.Level.Trend	Local Mean Sea Level Trend	mm / yr	NOAA Tides and Currents: Sea Level Trend				
Shelter.Afforded	The shelter afforded from wind, sea, and swell, refers to the area where normal port operations are conducted, usually the wharf area.	Excellent (5), Good (4), Fair (3), Poor (2), None (1)	World Port Index (Pub 150)				

Port Vulnerability Index

(McIntosh & Becker, 2019)

Port Vulnerability Index

Examples of indicators

Sub-index	Variable				Relatio	on with vulnerability				
Physical	P1. Jetty crest freeboard (difference between crest elevation and water surfa	Higher elevation from	Higher elevation from the sea surface indicates lower degree of vulnerability.							
	P2. Frequency of extreme weather events	More frequent extreme weather events imply higher degree of vulnerability.								
	P3. Important wave height	The appearance of higher waves increases the vulnerability.								
	P4. Important wave length	The appearance of lor	nger waves increases the v	ulnerability.						
Social	S1. Professional usage	The professional usag	e of each harbour increase	s the vulnerability.						
	S2. Occupancy rate			The higher existing or	ccupancy rate of each harb	our indicates higher degre	e of vulnerability.			
	S3. Capacity			The higher capacity o	f the ports in terms of boat	ts increases the vulnerabili	ity.			
	S4. Distance from the urban area		_	Longer distance of ea	ch harbour from the urban	centres implies higher vu	Inerability.			
	S5. Number of inhabitants		_	A community with sm	all number of inhabitants i	ndicates higher vulnerabili	ty.			
Economic	E1. Construction materials			The higher the structu	ural integrity of the harbou	r the lower its vulnerability				
	E2. Dredaina volume	The higher dredging v	volume implies higher dear	ee of vulnerability.						
	E3. Stone volume		The higher stone volume implies higher degree of vulnerability.							
	E4. Concrete volume		The higher concrete v	olume implies higher dear	ee of vulnerability.					
						,				
Indices	Parameters	1		2	3	4	5			
Physical	P1. Distance from the sea surface (m)	>0.75	0.5	1-0.75	0.26-0.50	0.01-0.25	0			
	P2. Frequency of extreme weather events (%)	<30%	30-	49%	50-69%	70-89%	≥90%			
	P3. Important wave high (m)	<0.3	0.3	-0.6	0.7-1.0	1.1-1.4	≥1.5			
	P4. Important wave length (m)	<5	5-9)	10-14	15-19	≥20			
Social	S1. Professional usage (%)	<30%	30-	49%	50-69%	70-89%	≥90%			
	S2. Current usage (%)	<30%	30-	49%	50-69%	70-89%	≥90%			
	S3. Capacity (boats)	<25	25-	49	50-74	75-99	≥100			
	S4. Distance from the urban area (km)	<5	5-9)	10-14	15-19	≥20			
	S5. Number of inhabitants	>10000	750	1-10000	5001-7500	2501-5000	≤2500			
Economic	E1. Construction materials	Mainly concrete	Part	tly concrete	Mainly cement	Partly cement	No cement			
	E2. Dredging volume (m ³)	<500	500	-999	1000-1499	1500-2999	≥3000			
	E3. Boulders volume (m ³)	<500	500	-1499	1500-3499	3500-4999	≥5000			
	E4. Concrete volume (m ³)	<100	100	-199	200-349	350-499	>500			

(Kontogianni et al., 2018)

CVI & PVI

- Η μελέτη μίας παράκτιας περιοχής, στην οποία λειτουργεί ένας λιμένας, δε μπορεί να μη λάβει υπόψιν τις πιέσεις της τεχνικής υποδομής. Αντίστοιχα, οι λειτουργίες ενός λιμένα εξαρτώνται άμεσα από τα κοινωνικά και οικονομικά χαρακτηριστικά της περιοχής στην οποία ανήκει και παράλληλα επηρεάζει τους παράκτιους βιοτόπους και το οικοσύστημα.
- Κατά πόσο τελικά, η αποσπασματική μελέτη της τρωτότητας μίας παράκτιας περιοχής, μέσω του CVI και ενός λιμένα, μέσω του PVI, μπορεί να καταλήξει σε ορθό σχεδιασμό και σωστά αποτελέσματα;
- Για τη βέλτιστη κατηγοριοποίηση των παραμέτρων χρησιμοποιούνται κατηγορίες σε 4 βασικούς υποδείκτες.

CVI & PVI Χρήσεις Γης -Χρήσεις Γης & Κάλυψης Μέσο Κόστος Υλικών Ζημιών -Στην Ενδοχώρα Από Έντονα Καιρικά Φαινόμενα Ποσοστό Απασχόλησης Επί

—Ταχύτητα Ανέμου (m/s)

LHW-NTUA

-Εύρος Θερμοκρασίας (ºC)

CVI & PVI

Υποδείκτες	AIR.A	Κατηγορία	AIRAA	Παράμετρος	Συμβολισμός	Μονάδες Μέτρησης	Κατηγοριοποίη ση βάση McIntosh &	Ορισμός/Σημασία παραμέτρου Very Low (1)	w Τιμές Βαθμολόγησης έναντι Τρωτότητας			Τιμές Βαθμολόγησης έναντι Τρωτότητας					ΣΚΟΡ	Ορισμός/Σημασία παραμέτρου Very High (5)	Περιγραφή Παραμέτρου (Description)
							Becker, 2020		Very Low (1)	Low (2)	Moderate (3)	High (4)	Very High (5)						
			1.1.1	Ταχύτητα Ανέμου / Speed Wind	U	m/s	exposure	Νηνεμία. Δεν προκαλούνται προβλήματα στη λειτουργία του λιμένος.	<1.5	1.6-5.5	5.6-10.9	11.0-16.9	>17.0		Παύση εργασιών. Ο λιμένας δε μπορεί να δεχτεί και να εξυπηρετήσει κανένα είδους πλοίου.	Container terminals will significantly reduce their operability for wind speeds higher than the Beaufort scale 6 (13.8m/s). Υψηλότερες ημές ταχώτητας ανέμου αυξάνουν την τρωτότητα και προκαλούν δεσλειπουργίες στο λιμένα.			
			1.1.2	Εύρος Θερμοκρασίας / Temperature Range	TmR	°C	exposure	Μικρό εύρος μεταξύ των θερμοκρασιών στο ίδιο έτος.	<6.9	7-10.4	10.5-13.9	14-17.4	>17.5	2	Το εύρος των τιμών μεταξύ του θερμότερου καλοκαιριού και του ψυχρότερου χειμώνα.	Εύρος μεταβολής τιμών θερμοκασίας εντός έτους. Οι μεγαλύτερες διακυμάνσεις και αλλαγές στη θερμοκρασία αυξάνουν την τρωτότητα.			
	1,1	Κλιματολογικά στοιχεία (Climate		Συχνότητα εμφάνισης ακραίων	F F · F			Καιρικά φαινόμενα βάση εποχής, χωρίς	Χωρίς μεταβολή						Σενάριο μέγιστης αύξησης καιρικών	More frequent extreme weather events imply higher degree of vulnerability. Η αύξηση των έντονων			
		oroigena (onimate)	1.1.3	χαινομένων / Frequency of extreme weather events	FI.EX.EV.	76	exposure	αύξηση στην έντασή τους.	<30	30-49	50-69	70-89	>90		φαινομένων.	καιρικών φαινομένων εντείνουν την τρωτότητα του λιμένα.			
Φυσικός Υποδείκτης (Physical)			1.1.4	Πρόβλεπόμενη αλλαγή ποσοστού ημερών πάνω από τη μέση μεγαλύτερη τιμή θερμοκρασίας / Projected change in days above baseline extremely hot temperature	Pr.Ch.Hot	%	exposure	Καμία αλλαγή στην αύξηση των θερμών ημερών.				Σενάριο μέγιστης αλλαγής και αύξησης Θερμών ημερών.	The percent change from observed baseline of the average number of days per year above baseline "Extremely Hot" temperature projected for the end-of-century, downscaled to 12 km resolution for the port location. Όσο μεγαλύτερη η αλλαγή και η αύξηση των θερμών ημερών τόσο αυξάνεται η τρωτότητα του λιμένα.						
	12	Μορφολογία / Γεωλογία	1.2.1	Ιζήματα πυθμένα / Buttom's sediment	But.Sed.	-	sensitivity	Εδάφη υψηλής αντοχής & πυκνότητας παρουσιάζουν χαμηλή τρωτότητα έναντι αλλαγών σε καιρικά φαινόμενα και έντονη	Βράχος	Σκληρή άργιλος-Συνεκ τική άργιλος	Αμμώδης άργιλος-Χονδ ρόκοκκη άμμος	Μεσόκοκκη άμμος-Λεπτόκ οκκη άμμος	Λάσπη-Ιλύς		Εδάφη χαμηλής αντοχής, έντονης διαπερατότητας θα παρουσιάσουν υψηλότερη τρωτότητα έναντι κλιματικών αλλαγών. Μετακινήσεις-καθιζήσεις-προσχώσεις που θα				
	1,2	(Morphology / Geology)						κυματική φόρτιση.	Πολύ πυκνό	Πυκνό	Μέσης Πυκνότητας	Χαλαρό	Πολύ Χαλαρό		δημιουργήσουν τεχνικες δυσλειτουργίες στο λιμένα.	το είους των εοαφών του ποσμενά.			
			1.2.2	Βαθυμετρία περιοχής / Bathymetry - Slope	β	-	sensitivity												
		Υδροδυναμική	1.3.1	Σημαντικό ύψος κύματος / Important Wave Height	Hs	m	exposure	Μέσο ύψος κύματος περιοχής σε κατάσταση νηνεμίας.	<0.3	0.3-0.6	0.7-1.0	1.1-1.4	>1.5		Ανώτατο επιτρεπόμενο όριο για την καλή λειτουργία των δραστηριοτήτων του λιμένα.	The appearance of higher waves increases the vulnerability. Όσο μεγαλύτερο είναι το ύψος των κυματισμών που προσβάλλουν το λιμένα τόσο			
	1,3	(Hydrodynamic)	1.3.2	Τάση μέσης στάθμης της θάλασσας / Sea level trend	MSL	mm/year	exposure	Χωρίς μεταβολή στη μέση στάθμη της θάλασσας.							Σενάριο μέγιστης αύξησης της στάθμης της Θάλασσας	αυςανεται η τρωτοτητα του. Local Mean Sea Level Trend. Όσο αυξάνεται η στάθμη της θάλασσας, λόγω κλιματικής αλλαγής, τόσο αυξάνεται η τρωτότητα ενός λιμένος.			

(Koulouri, 2022)

